Кислотно-основное состояние крови

Активная реакция крови – это очень важная гомеостатическая константа организма, которая обеспечивает течение окислительно-восстановительных процессов и деятельность ферментов, интенсивность, а также направление всех видов обмена.

 

Кислотность или щелочность раствора зависит от содержания в нем свободных ионов водорода [H+]. Количественно активная реакция крови характеризуется водородным показателем – рН (powerhydrogen – «сила водорода»).

 

Водородный показатель – отрицательный десятичный логарифм концентрации водородных ионов, то есть рН = –lg [H+].

 

Символ рН и шкалу рН (от 0 до 14) ввел в 1908 г. Серенсен. Если рН равно 7,0 (нейтральная реакция среды), то содержание ионов Н+ равно 107 моль/л. Кислая реакция раствора имеет рН от 0 до 7; щелочная – от 7 до 14. Кислота рассматривается как донор ионов водорода, основание – как их акцептор, то есть вещество, которое может связывать ионы водорода.

 

Постоянство кислотно-основного состояния (КОС) поддерживается с помощью как физико-химических (буферных систем), так и физиологических механизмов компенсации (легкие, почки, печень, другие органы).

 

Буферными системами называют растворы, обладающие свойствами достаточно стойко сохранять постоянство концентрации водородных ионов как при добавлении кислот или щелочей, так и при разведении.

 

Буферная система – это смесь слабой кислоты с солью данной кислоты, образованной сильным основанием.

 

Примером может служить сопряженная кислотно-основная пара карбонатной буферной системы: Н2СО3 и NaНСO3.

 

В крови существует несколько буферных систем:

 

1) бикарбонатная (смесь Н2СО3 и НСО3-);

2) система «гемоглобин – оксигемоглобин» (оксигемоглобин имеет свойства слабой кислоты, а дезоксигемоглобин – слабого основания);

3) белковая (то есть обусловленная способностью белков ионизироваться);

4) фосфатная система («дифосфат – монофосфат»).

 

Самой мощной является бикарбонатная буферная система – она включает 53 % всей буферной емкости крови, а остальные системы составляют соответственно 35, 7 и 5 %.

 

Особое значение гемоглобинового буфера заключается в том, что кислотность гемоглобина зависит от его оксигенации, то есть газообмен кислорода потенцирует буферный эффект системы.

 

Очень высокую буферную емкость плазмы крови можно проиллюстрировать на следующем примере. Если 1 мл децинормальной соляной кислоты добавить к 1 л нейтрального физиологического раствора, который не является буфером, то его рН упадет с 7 до 2. Если такое же количество соляной кислоты добавить к 1 л плазмы, то рН снизится всего с 7,4 до 7,2.

 

Роль почек в поддержании постоянства кислотно-основного состояния заключается в связывании или выведении ионов водорода и возвращении в кровь ионов натрия и бикарбоната.

 

Механизмы регуляции КОС почками тесно связаны с водно-солевым обменом. Метаболическая почечная компенсация развивается гораздо медленнее дыхательной компенсации – в течение 6-12 ч.

 

Постоянство кислотно-основного состояния поддерживается также деятельностью печени. Большинство органических кислот в печени окисляется, а промежуточные и конечные продукты либо не имеют кислого характера, либо представляют собой летучие кислоты (углекислота), быстро удаляющиеся легкими. Молочная кислота в печени преобразуется в гликоген (животный крахмал). Большое значение имеет способность печени удалять неорганические кислоты вместе с желчью.

 

Выделение кислого желудочного сока и щелочных соков (панкреатического и кишечного) также имеет значение в регуляции КОС.

 

Огромная роль в поддержании постоянства КОС принадлежит дыханию. Через легкие в виде углекислоты выделяется 95 % образующихся в организме кислых валентностей. За сутки человек выделяет около 15 000 ммоль углекислоты, следовательно, из крови исчезает примерно такое же количество ионов водорода (Н2СО3 = СО2↑ + Н2О). Для сравнения: почки ежедневно экскретируют 40–60 ммоль Н+ в виде нелетучих кислот.

 

Количество выделяемой двуокиси углерода определяется ее концентрацией в воздухе альвеол и объемом вентиляции. Недостаточная вентиляция приводит к повышению парциального давления СО2 в альвеолярном воздухе (альвеолярная гиперкапния) и соответственно к увеличению напряжения углекислого газа в артериальной крови (артериальная гиперкапния). При гипервентиляции происходят обратные изменения – развивается альвеолярная и артериальная гипокапния.

 

Таким образом, напряжение углекислого газа в крови, с одной стороны, характеризует эффективность газообмена и деятельность аппарата внешнего дыхания, с другой – является важнейшим показателем кислотно-основного состояния, его дыхательным компонентом.

 

Респираторные сдвиги КОС самым непосредственным образом участвуют в регуляции дыхания. Легочный механизм компенсации является чрезвычайно быстрым (коррекция изменений рН осуществляется через 1–3 мин), очень чувствительным. При повышении РаСО2 с 40 до 60 мм рт. ст. минутный объем дыхания возрастает от 7 до 65 л/мин. Но при большом повышении РаСО2 или длительном существовании гиперкапнии наступает угнетение дыхательного центра с понижением его чувствительности к СО2.

 

При ряде патологических состояний регуляторные механизмы КОС (буферные системы крови, дыхательная, выделительная системы) не могут поддерживать рН на постоянном уровне. Развиваются нарушения КОС и в зависимости от того, в какую сторону происходит сдвиг рН, выделяют ацидоз и алкалоз.

 

В зависимости от причины, вызвавшей смещение рН, выделяют дыхательные (респираторные) и метаболические (обменные) нарушения КОС: дыхательный ацидоз, дыхательный алкалоз, метаболический ацидоз, метаболический алкалоз.

 

Системы регуляции КОС стремятся ликвидировать возникшие изменения, при этом респираторные нарушения нивелируются механизмами метаболической компенсации, метаболические нарушения компенсируются изменениями вентиляции легких.